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Context

1. Flum DR, Koepsell T, Heagerty P, Sinanan M, Dellinger EP. Common Bile Duct Injury During Laparoscopic Cholecystectomy and the Use of Intraoperative 
Cholangiography: Adverse Outcome or Preventable Error? Arch Surg. 2001;136(11):1287–1292.

craigranchobgyn.com

+ Minimal incision

+ Reduced pain

+ Shorter recovery time.

− Complex bimanual motor skills and 
hand-eye coordination

− Variable adverse event rate1

− Most errors during the learning phase
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Pattern Cutting

2. H. Peters, G. M. Fried, L. L. Swanstrom, N. J. Soper, L. F. Sillin, B. Schirmer, and K. Hoffman, “Development and validation of a comprehensive 
program of education and assessment of the basic fundamentals of laparoscopic surgery,” Surgery, vol. 135, no. 1, pp. 21–27, Jan. 2004.

Peg Transfer Ligating Loop Intracorporeal & Extracorporeal Suture
�www.flsprogram.org�

• Fundamentals of Laparoscopic Surgery (FLS) is a 
pre-requisite for Board certification to every general 
and Ob/Gyn surgeon2.

• Two components – cognitive (high stakes exam) + 
psychomotor (trainer box)

• FLS trainer box is effective in teaching technical motor
skills2.

• Performance is assessed by FLS score, which is 
formulated by completion time and performance error.Society of American Gastrointestinal and Endoscopic

Surgeons (SAGES)

http://www.flsprogram.org/
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Challenges and tools

Challenges:
• FLS score is manually calculated by proctor

(www.flsprogram.org).
• Time consuming- two to three weeks;
• Labor intensive – trained proctor needed.

• Skill acquisition procedure is analyzed post-
hoc.

• Learning curve factors could not be predicted
before the completion of the training.

• Impede training protocol customization.
• The training protocol relies on repetition.

• Time consuming.

Tools:
• Machine learning

• High power in pattern recognition;
• Automation in feature extraction.

• Neuroimaging
• Instant measurement;
• Insight in brain activities.

• Neuromodulation
• Facilitated motor skill learning process.

Specific aim 1
“.. is to predict learning curve factors in the early stage of training”

http://www.flsprogram.org/


Specific aim 2
“.. is to predict FLS scores via neuroimaging”
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• High power in pattern recognition;
• Automation in feature extraction.

• Neuroimaging
• Instant measurement;
• Insight in brain activities.
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http://www.flsprogram.org/
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Specific aim 1
“.. is to predict learning curve factors in the early stage of training”
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“.. is to predict FLS scores via neuroimaging”
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“.. is to investigate whether surgical skill performance, acquisition, retention, and 

transfer can be enhanced via neuromodulation.”



Background and motivation
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§ Predicting learning curve features
ahead allows training protocol
customization;

§ The existing learning curve 
modeling methods
§ Log-linear

§ No approach is to predict the 
learning curve characteristics from 
the initial performance.

! = !#$%

N is the number of trials, Y is the performance, & is the learning rate, and !# is the initial performance level.
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Question: Can the number of trials to reach proficiency and final performance level be 
predicted from the initial performance information?
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Learning curve analysis

• Kernel Partial Least Squares (KPLS)
• Small sample size
• High dimensional variables

• The coefficient of determination:

Residual

Maximize Covariance(x,y)

Hypothesis #1: The initial performance of a trainee can predict the number of trials required to achieve 
proficiency and the final proficiency level.

Prediction KPLS Log-linear model
!" = 0.72 !" = −109.55

!" = 0.89 !" = −3.36

!" = 1 − ∑012
3 450 − 50 "

∑0123 50 − 65 "

Kernel
matrix Regression y

Initial performance Number of trials to reach proficiency

Final performance levelInitial performance

Initial performance Number of trials to reach proficiency Final performance level

• Cross-validation: Leave-one-out

Significance: enables the customization of the training protocol.

y: X:
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Background and motivation
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§ The learning procedure is different between trainees

Question: Can we represent the difference by one factor?

Final performance 
level

Final performance 
level

Number of trials 
to reach 
proficiency

Number of trials 
to reach 
proficiency

Initial performance 
level

Initial performance 
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Hypothesis #2: A single factor can describe the learning curve factors

Learning curve analysis

• Kernel Principle Component Analysis (KPCA)
• Small sample size
• High dimensional variables

• Could LI reflect the learning curve factors?

Kernel
matrix PCA yX

LI: ‘learning index’

Initial performance 
level

Number of trials to 
reach proficiency

Final performance 
level

LI

Initial performance 
level

Number of trials to 
reach proficiency

Final performance 
level

KPCA KPLS

!" = 0.96

!" = 0.93

!" = 0.94

Initial performance level

Number of trials to reach proficiency

Final performance level

y: X:
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Learning curve analysis

• K-means grouping results
• Using the learning curve factors

• Using the extracted LI value
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Significance: provide a quantitative understanding in different learning abilities.
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Summary

We established that:

§ Learning curve factors can be predicted from the initial performance;

§ Single factor can represent the learning curve factors.

Impact:

• Enabled the surgical training customization;

• Understanding of different learning abilities.

Specific aim 1
“.. is to predict learning curve features in the early stage of training” (Completed) 
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Specific aim 1
“.. is to predict learning curve features in the early stage of training”

Specific aim 2
“.. is to predict FLS scores via neuroimaging”

Specific aim 3
“.. is to investigate whether surgical skill performance, acquisition, retention, and 

transfer can be enhanced via neuromodulation.”
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Background

8 mm

3 - 4cm

Skin
Bone
Dura and 
pial
surface
Brain

Detector
Short separation 
detector 

Source

Infra-
red light

§ Since attenuated light is related to functional chromophores (such as oxy-HbO2 and deoxy-HbO2), 
the relative concentration of these chromophores can be determined and finally be correlated with 
brain activity.

§ Why should we use NIRS to measure brain activity?

§ High temporal resolution (~ 100Hz)

§ High depth penetration (~1.5 cm)

§ Non-invasive and allows for complex tasks to be performed

§ Functional Near infrared spectroscopy (fNIRS) 

§ Non-invasive imaging technique

§ Delivers infrared light on the surface of the scalp 
via source probes.

§ Infrared light scatters through turbid tissue and the 
backscattered light is detected
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§ fNIRS data could classify motor tasks.
§ Simple vs. complex motor tasks (Holper and Wolf 2011).
§ Left vs. right hand motion (Fazli et al. 2012, Naseer and Hong 2013).
§ Arm lifting vs. knee extension (Shin and Jeong 2014).

§ fNIRS data could classify surgical levels.
§ Surgical skill levels could be classified by fNIRS (Nemani et al. 2018).
§ Transfer skill levels could be classified by fNIRS (Nemani et al. 2019).

Background

Question: Can fNIRS data predict FLS score?
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Method
§ Deep learning approaches

§ Seizer detection from EEG data via Convolutonal neural network (CNN) (Yuan et al. 2019).
§ Cardiac disease detection from ECG data via CNN (Fan et al. 2018).
§ Human activity classification from kinematic data via CNN (Yao et al. 2017).

§ Aim: to predict FLS score from fNIRS data via deep learning approaches.

§ Data acquisition:
§ fNIRS data was acquired from 13 medical students during the execution of pattern cutting task;

§ Feature extraction:
§ Oxy- (HbO) and deoxy-hemoglobin (HbR) concentration from PFC region;
§ Seven features* were extracted from HbO and HbR.

*Note: Mean, variance, slope, skewness, kurtosis, minimum and maximum.



Method
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§ Brain-NET:



Results
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§ Question: Do all the features contribute to the model? Which features contribute the most?
§ Backward feature selection

Feature direction

PFC location direction• All the features contribute to the model;
• HbR slope and left PFC location contribute the most to the model.



Results
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§ Training
§ The model is evaluated with 30 rounds of ten-fold cross

validation using randomly shuffled samples for each round.

§ Results

Brain-NET KPLS SVR RF

True FLS score True FLS score True FLS score True FLS score
P

re
di

ct
ed

 F
LS

 s
co

re
R2 = 0.73 R2 = 0.64 R2 = 0.58 R2 = 0.54

§ Since the relationship between fNIRS data and FLS score is 
unknown, curve fitting regression methods such as linear 
regression or polynomial regression are not suitable.

§ KPLS, SVR and RF are curve fitting free methods:
§ KPLS - Kernel partial least squares
§ SVR – Support vector regression
§ RF – Random forest

§ We compared Brain-NET with KPLS,
SVR, RF:

Significance: establish fNIRS as a fast, cost-
effective way to assess FLS score.
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Limitation

§ Small sample size
§ Experimental limitation.
§ Trial discard due to motion artifacts.

§ Motion artifact removal methods in fNIRS

H
bO

Prune Channels

Optical Density

Artifact Reduction

Δ Hemoglobin conc.

HRF

Raw NIRS signals

§ fNIRS data processing flow

§ Spline (Scholkmann et al, 2010) § Wavelet (Molavi and Dumont 2012)

§ Kalman �Izzetoglu et al. 2010� § PCA (Zhang et al. 2005)

§ Discard
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Proposal

§ ‘Denoising autoencoder’ (DAE)

§ Preliminary results
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Summary

Specific aim 2
“.. is to predict FLS scores via neuroimaging”

We established that
§ FLS score can be predicted by neuroimaging via deep learning.

Significance:
§ Provide a fast, cost-effective method to assess FLS score.

Future work:
§ fNIRS motion artifact removal by DAE

§ Train with larger data sample size;
§ Test on experimental data;
§ Comparison with other denoising models;

Expected outcome:
§ Provide a model enabling removing motion artifact in fNIRS with high accuracy.
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Specific aim 1
“.. is to predict learning curve features in the early stage of training”

Specific aim 2
“.. is to predict FLS scores via neuroimaging”

Specific aim 3
“.. is to investigate whether surgical skill performance, acquisition, retention, 

and transfer can be enhanced via neuromodulation.”
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Gap and motivation

§ Current training protocol relies on repetition of tasks.
§ Proficiency-based training protocol requires repetitions until the proficiency is detected (Ritter et al. 2007).

§ There is no approaches to enhance the surgical skill training protocol.

§ Studies on enhancing surgical learning through actuating neurophysiology are limited.
§ Neuron in cortex and brain stem will descend through motor pathways to control muscles (Bear et al. 2016).
§ Specific brain regions function for motor performance (Hikosaka et al. 2002).

§ Neuromodulation could enhance motor skill learning procedure.
§ Basic motor skill learning process was enhanced by neuromodulation (Paulus et al. 2011).

Specific aim 3
“.. is to investigate whether surgical skill performance, acquisition, retention, and 

transfer can be enhanced via neuromodulation.”
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Background
§ Noninvasive brain stimulation

§ Neuromodulation

(George et al. 2001)(Yavari et al. 2017)

Chemical Depolarization

Oscillation

1790’s

Discovery that
nerves carry

electrical energy

Experiments with
electrical brain

stimulation

Transcranial
Magnetic

stimulation (TMS)

1875 1985

Transcranial
electrical current
stimulation (tES)

2000

Multiscale effectsCurrent flowSetups
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Gap

• Adaption
• Lower limb
• Rehabilitation

Transcranial direct
current stimulation

(tDCS)

Transcranial alternating
current stimulation

(tACS)

Transcranial random
noise stimulation

(tRNS)

• Muscle strength
• Visual-motor coordination
• Implicit learning
• Rehabilitation

• Muscle strength
• Visual-motor
• Implicit learning
• Explicit learning

• Visual-motor coordination
• Implicit learning
• Rehabilitation

• Dexterity
• Bimanual skill

• Dexterity
• Bimanual skill
• Professional performance

(To date, no evidence)

Basic motor skill learning Fine motor skill learningtES type



§ Hypothesis: tES, including tDCS and tRNS will enhance the surgical bimanual task performance.

§ Experimental design:

Pilot study 
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Motor task Pattern cutting
Task repetition 4
N of trainees 6



Pilot study 
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§ The FLS score increased significantly under tRNS condition.
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S 
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§ Hypothesis: Medical students that are subjected to tRNS perform better than those subjected to
sham stimulation.

§ Experimental design:

Experiment #1

30
Nemani, Arun, et al. "Assessing bimanual motor skills with optical neuroimaging." Science advances 4.10 (2018): eaat3807.

Probe geometry:

Motor task Pattern cutting
Task repetition 4
N of trainees 12



Experiment #1
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§ The FLS score increased under tRNS condition;
§ Time decreased for both conditions;
§ Error decreased under tRNS condition.
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Experiment #1
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Electrode position

Electrode position

*
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Summary

Conclusion
§ tRNS enhanced surgical task performance level;

§ Correlated HbO level increased in left and right PFC, medial M1 and SMA.

Significance
§ tRNS could potentially decrease surgical error, to enhance patient safety;

Specific aim 3 : to investigate whether surgical skill performance, acquisition, retention, 
and transfer can be enhanced via neuromodulation.



§ Hypothesis: Novice participants subjected to tRNS learn at a faster rate than those subjected to
sham stimulation.

§ Experimental design:

Experiment #2

34

Motor task: Pattern cutting
N of trainees:

N=21 in total
‘tDCS group’, n = 7;
‘tRNS group’, n = 7;
‘Sham group’, n = 7;
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Future work

Future work
§ The data analysis of Experiment #2

§ Learning curve data;
§ Learning curve features;
§ fNIRS data;
§ ANOVA test.

Expected outcome
§ tDCS and tRNS could accelerate the learning acquisition, retention, and

transfer.

Specific aim 3 : to investigate whether surgical skill performance, acquisition, retention, 
and transfer can be enhanced via neuromodulation.



Conclusions & future work
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Pilot Study & Experiment #1
§ tRNS enhanced surgical skill performance level;
§ HbO level increased in left and right PFC, medial M1 and SMA.
Experiment #2
§ FLS score and fNIRS data analysis

Specific aim 1 : to predict learning curve features in the early stage of training. (Completed)
§ Learning curve features can be predicted from the initial performance;
§ Single factor can represent the learning curve features;

Specific aim 2 : to predict FLS scores via neuroimaging.
§ Neuroimaging can predict FLS score;

Specific aim 3 : to investigate whether surgical skill performance, acquisition, retention, 
and transfer can be enhanced via neuromodulation.

(Completed)
(To be done)§ fNIRS denoise model

(Completed)
(Completed)

(Completed)
(Completed)

(To be done)



Timeline
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December January February March

S.A. #2

DAE model

Paper manuscript

S.A. #3

Data processing

Paper manuscript

Dissertation + 
Defense
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Journal papers

Yuanyuan Gao, Uwe Kruger, Steve Schwaitzberg, Xavier Intes and Suvranu De, “A Machine Learning approach to predict surgical

learning curves”, Surgery, accepted in October 2019. (S.A. #1)

Yuanyuan Gao, Pingkun Yan, Uwe Kruger, Suvranu De and Xavier Intes, “Predicting surgical skill levels via functional brain imaging”,

IEEE-TBME, under review (S.A. #2)

Yuanyuan Gao, Lora Cavuoto, Suvranu De and Xavier Intes, “A comprehensive review of experimental neuroimaging studies of the effect

of transcranial electrical stimulation on human motor skills”, Science Translational Medicine, in preparation. (review for S.A. #3)

To be done:

1. fNIRS denoise work (S.A. #2)

2. Experiment #1 & #2 (S.A. #3))

Conference papers

Yuanyuan Gao, Pingkun Yan, Uwe Kruger, Suvranu De and Xavier Intes, “Neuroimaging biomarkers for surgical skill level prediction”,

SPIE.bios, San Francisco, CA, February 2019.

Yuanyuan Gao, Pingkun Yan, Uwe Kruger, Suvranu De and Xavier Intes, “fNIRS as a quantitative tool to asses and predict surgical skills”,

OSA Biophotonics Congress: Optics in the Life Sciences, Tucson, AZ, April 2019.
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Conference papers

Yuanyuan Gao, Lora Cavuoto, L., Pingkun Yan, Uwe Kruger, Steven Schwaitzberg, Suvranu De, and Xavier Intes, “A deep learning

approach to remove motion artifacts in fNIRS data analysis”. In Optics and the Brain, Optical Society of America, 2020, submitted

Yuanyuan Gao, Lora Cavuoto, L., Pingkun Yan, Uwe Kruger, Jessica Silvestri, Steven Schwaitzberg, Xavier Intes and Suvranu De,

“Monitoring the effect of transcranial Electric current Stimulation (tES) during a bimanual motor task via functional Near-InfraRed

Spectroscopy (fNIRS)”. In Optics and the Brain, Optical Society of America, 2020, submitted

Yuanyuan Gao, Pingkun Yan, Uwe Kruger, Lora Cavuoto, Steven Schwaitzberg, Suvranu De and Xavier Intes, “Deep neural network

evaluation of surgical skills”, American Surgical Association Annual 14th meeting (2020), submitted.
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Thank you!
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KPLS

In this study, we adopted a kernel PLS algorithm to model the non-linear relationship 
between predictor X ("×$) and y ("×1). First, the standard PLS algorithm steps in 
this study are listed from step (1) to (8), as shown below:

(1)' = )*+;
(2). = )';

(3)0 = 123

121
;

(4)5 = 621

121
;

(5)) = ) − .5*;
(6)+ = + − .0*;
(7);<5<=. >.<5 1 .? 6 @".AB C?"D<;E<
(8)G = H I*H JKL*;

KPLS algorithm is a non-linear counterpart of standard PLS algorithm. KPLS is able to 
model the non-linear relationship by mapping the predictor into a high-dimensional 

non-linear space, MN → Φ(MN). We adopted radial basis kernel Q M, + = exp(−
| WJ3 |X

Y
)

as the kernel Gram matrix Z = ΦΦ* in KPLS algorithm.
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KPCA

As a non-linear counterpart of PCA, the Kernel principle component analysis (KPCA) 
extracts primary component in a non-linear sense. We adopted singular value 
decomposition method to process PCA in this paper. The steps of KPCA are shown 
below:
1. As we did in KPLS, projected !" → $(!")
2. Define a kernel matrix ' = $$)(Here we use '(!, +) = exp(− 012 3

4 ))
3. Centered Gram matrix 5 = ' − 6

7 ('89)17) − 6
7 87 ('87)

)+ 6
73 17(17

)'87)87) .
4. eigendecomposition of G, the KPCA score vector t is calculated as 

< = =) >$ = ?)$) $ − 1
9$87 = ?)(' !, !@ − 1

9'87)
Where >$ is centered $, ? = A − 6

7 87 B, U and B represent the n largest eigenvalues 
and corresponding eigenvectors.
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K-means

1. Choose the number of clusters(k) and obtain the data points
2. Place the centroids !", !#, …, !$ randomly
3. Repeat steps 4 and 5 until convergence or until the end of a fixed number of 

iterations
4. For each data point %& :

• Find the nearest centroid (!", !#, …, !$ ) by Euclidean distance
• Assign the point to that cluster

5. For each cluster j = 1..k
• New centroid = mean of all points assigned to that cluster

6. End 
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Layer Output 
Shape

Input (512,1)

Conv1D (512,32)

MaxPooling1D (256,32)

Conv1D (256,32)

MaxPooling1D (128,32)

Conv1D (128,32)

UpSampling1D (256,32)

Conv1D (256,32)

UpSampling1D (512,32)

Conv1D (512,1)

Total params: 9,793

Layer Output 
Shape

Input (512,1)

Conv1D (512,32)

MaxPooling1D
+dropout(0.1) (256,32)

Conv1D (256,32)

MaxPooling1D+
dropout(0.1) (128,32)

Conv1D (128,32)

UpSampling1D+
dropout(0.1) (256,32)

Conv1D (256,32)

UpSampling1D+
dropout(0.1) (512,32)

Conv1D (512,1)

Total params: 9,793

Layer Output 
Shape

Input (512,1)

Conv1D (512,32)

MaxPooling1D (256,32)

Conv1D (256,32)

MaxPooling1D (128,32)

Conv1D (128,32)

MaxPooling1D (64,32)

Conv1D (64,32)

MaxPooling1D (32,32)

Conv1D (32,32)

UpSampling1D (64,32)

Conv1D (64,32)

UpSampling1D (128,32)

Conv1D (128,32)

UpSampling1D (256,32)

Conv1D (256,32)

UpSampling1D (512,32)

Conv1D (512,1)

Total params: 30,401

Layer Output Shape

Input (512,1)

Conv1D (512,32)

MaxPooling1D
+dropout(0.1) (256,32)

Conv1D (256,32)

MaxPooling1D
+dropout(0.1) (128,32)

Conv1D (128,32)

MaxPooling1D
+dropout(0.1) (64,32)

Conv1D (64,32)

MaxPooling1D
+dropout(0.1) (32,32)

Conv1D (32,32)

UpSampling1D
+dropout(0.1) (64,32)

Conv1D (64,32)

UpSampling1D
+dropout(0.1) (128,32)

Conv1D (128,32)

UpSampling1D
+dropout(0.1) (256,32)

Conv1D (256,32)

UpSampling1D
+dropout(0.1) (512,32)

Conv1D (512,1)Total params: 30,401

Learning rate 0.00001, decay 0.5 per 100 epochs

Epochs 1000 (save the best)

Batch size 32

Loss Mean squared error

Optimizer Adam

Model: 4layers Model: 4layers+dropout Model: 8layers Model: 8layers+dropout
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50010005000

4 layers

MSE loss

8 layers
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p value tDCS tRNS Sham

Score 0.900 0.015 0.180
Time 0.847 0.023 0.187
Error 0.551 0.241 0.216

Shapiro-Wilk normality test results
Pilot Study

Study #1

p value tRNS Sham

Score 0.005 0.134
Time 0.816 0.065
Error 0.018 0.495
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p value tRNS Sham

LPFC 0.000 0.272
MPFC 0.021 0.795
RPFC 0.000 0.850
LLM1 0.000 0.055
LMM1 0.000 0.018
RMM1 0.052 0.002
RLM1 0.009 0.751
SMA 0.127 0.002

Shapiro-Wilk normality test results
Study #1


