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1. Introduction 

Recently, functional near-infrared spectroscopy (fNIRS) has been shown to monitor human motor performance and 

broadly utilized to predict motor tasks or workload in various settings [1].  For example, fNIRS data can be used to 

classify simple and complex finger tapping tasks [2].  fNIRS also showed its capacity to classify left vs. right hand 

or wrist motor execution or imagery [3, 4], and different motor activities [5]. However, to date, a limited number of 

preliminary studies have been reported in regards to assessing fine surgical motor skills using fNIRS [6]. Here we 

will report on our efforts in establishing fNIRS as a robust and quantitative tools to assess and predict surgical skills. 

Especially, we have recently established that fNIRS enables to retrospectively classify subject surgical skill levels, 

showing its potential utility of determining the surgical performance within the Fundamentals of Laparoscopic 

Surgery (FLS) program accredited framework [7]. Additionally, to further investigate the potential of fNIRS as a 

non-invasive, objective, quantitative methodology for surgical skills assessment in near-real time, we developed a 

convolutional neural network (CNN) model called “Brain-NET”. Based on this model, we further examined which 

biomarker of fNIRS signal contributed the most to this model using a ‘knock-one-out’ scheme and demonstrate its 

potential to predict the FLS-score which is currently employed in surgical certification. 

 

2.  Methods and results 

fNIRS data were collected on medical students over an eleven-day training period while they were performing the 

bimanual PC task, which is part of the FLS training program and certification examination. Thirteen healthy subjects 

(mean age ±SD, 25.2± 3.8, 22 to 34 years old) participated in this study. A written and dated informed consent was 

obtained from each subject. The selected FLS precision cutting surgical task consists in cutting a gauze following a 

marked circle as accurately and quickly as possible. The performance score of each trial was calculated using the 

accredited FLS scoring methodology with consent under a nondisclosure agreement from the FLS Committee. The 

fNIRS signals were measured simultaneously during each FLS PC trial by a continuous-wave near-infrared 

spectrometer (CW6 system, Techen Inc., MA, USA) from six locations on the prefrontal cortex (PFC). The acquired 

optical intensity time courses were preprocessed using the publicly available Homer2 software to obtain the oxy- 

and deoxy- hemoglobin cortical response (HbO and HbR respectively). We extracted seven features, namely the five 

first moments (mean, variance, slope, skewness, kurtosis) as well as the range (maximum and minimum) for both 

these biomarkers [1]. After this procedure, we remained with a 2D input matrix containing fourteen hemoglobin data 

features from six PFC locations. This data processing flow leaded to a total sample size of 702 for the fNIRS data. 

 To gauge if these spatially resolved 7 features of HbO and HbR can predict the FLS score, we developed a CNN 

architecture, Brain-NET, specially designed for this application. The input matrix is expressed as X shaped as (l×f), 

where l is the dimension of the PFC locations and f is the dimension of the hemoglobin features. In this case l = 6 

and f = 14. There are two kinds of relationships embedded in the input matrix X that we want to extract. The 

relationships within hemoglobin feature domain and interactions across the PFC locations. Therefore, we apply 1D 

convolutional kernels along the feature direction and along the PFC location direction hierarchically to learn the 

relationships, with the kernel size of 1 and the stride of 1. For each convolutional layer, Brain-NET learns 8 filters, 

and uses ReLU as the activation function. Then we flatten the output derived from the first two CNN layers into a 

vector and apply two fully connected neural network layers with ReLU activation functions. The output is one value 

which is the predicted FLS score. To train our Brain-NET model, we use the mean squared error as our objective 



loss function and stochastic gradient descent as optimization method. The learning rate is set to 0.0001. We select a 

ten-fold cross validation scheme. We further randomly select 30 samples from training set each time for training 

performance validation. The value of coefficient of determination (denoted by R2) is used to quantify the accuracy 

of the proposed methods. 

 Next, to investigate if all the seven extracted features are required to regress the motor performance levels, we 

adopted a “knock-one-out” scheme in which one feature across all locations are removed before training the model. 

If the R2 value does not change or increases, it means that the knocked out feature does not contribute or even 

contributes negatives, which may be noise in this case. On the other hand, if the R2 value decreases, it means that the 

knocked out feature contributes to the model. The larger drop of the performance, the higher the contribution of that 

feature. As depicted in Fig. 1, no matter which of the seven features for HbO and HbR is knocked out, the value of 

coefficient of determination (denoted by R2) decreases. Hence, it demonstrates that all the features contribute to the 

model. Among all the features, knocking out the feature of HbR slope leads to the lowest R2 value, indicating that it 

contributes the most to our model. Even though conventionally, HbO is the typical biomarker employed in fNIRS 

study due to its robust nature, HbR has been shown to be a strong indicator of motor or language stroke diseases [9, 

10]. Additionally, the slope feature has also been identified as a discriminatory feature in several prior NIRS-BCI 

studies [11–13]. Hence, these findings are corroborated by previous studies even though they have been performed 

in different settings.  We will present further data demonstrating the ability of Brain-Net in predicting the FLS score 

for certification classification purposes (ROC-AUC=0.91). 

 

Fig 1 Full matrix of the R2 values when each feature (1 out of 7x2) is knocked out.  
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