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1. Introduction 
Motion artifact is a ubiquitous challenge in functional near-infrared spectroscopy (fNIRS) data analysis especially 
when the experimental design relies upon subject motion. Hence, different signal processing methodologies have 
been proposed over the years to filter out these motion artifacts to recover with accuracy cortical activations from 
fNIRS time-series data. Still, recently, deep learning (DL) techniques have been shown as a suitable techniques to  
remove noise in biological data in a fast and efficient manner [1]. Herein, we report on the first foray in using a DL 
model to tackle this difficult task in fNIRS. First, we designed different convolution neural network (CNN) 
architecture to identify the best one. To assess the performances of each architecture, we simulated a fNIRS data set 
employed both for training and validation. Then, upon successful validation of the training paradigm and 
identification of the best architecture, termed ‘CNNIRS’, we benchmarked CNNIRS performances against 
established denoising technique used in the field, including spline, wavelet and Kalman filters. Overall, we report 
that CNNIRS outperforms all these established filtering techniques both in terms of computational efficiently but 
also accuracy as reported by the mean squared error (MSE) metric. Hence, CNNIRS is well positioned to facilitate 
fNIRS data set analysis.  
2.  Methods 

2.2 Neural network model setup and training 
Inspired by the model structure in [1], we set up four CNN based ‘encoders-decoders’ models: ‘4-layer’, ‘4-
layer+dropout’, ‘8-layer’ and ‘8-layer+dropout’. The ‘4-layer’ model and ‘8-layer’ model structures are shown in 
Table 1 and Table 2. Based on these two models, the ‘4-layer+dropout’ model and ‘8-layer+dropout’ model were 
created by adding dropout (0.1) layers after the Maxpooling (MP) and Upsampling (US) layers. We set mean square 
error (MSE) as the loss function and used ‘Adam’ optimizer. The models were adequately trained by 1000 epochs 
with the best one saved. The learning rate was set to 0.000001 and decayed by 2 per 100 epochs. 

Table 1. ‘4-layer’ model 
Layer Input Conv1 MP1 Conv2 MP2 Conv3 US1 Conv4 US4 Conv5 

Output size 512×1 512×32 256×32 256×32 128×32 128×32 256×32 256×32 512×32 512×1 
Table 2. ‘8-layer’ model 

Layer Input Conv1 MP1 Conv2 MP2 Conv3 MP1 Conv4 MP4 Conv5 
Output size 512×1 512×32 256×32 256×32 128×32 128×32 64×32 64×32 32×32 32×1 

Layer UP1 Conv6 UP2 Conv7 UP3 Conv8 UP4 Conv9   
Output size 64×32 64×32 128×32 128×32 256×32 256×32 512×32 512×1   

 

2.2. fNIRS data simulation 
To simulate fNIRS data set with features that are closely matching experimental settings we followed the approach 
as laid out in [3]. First, we fitted autoregressive (AR) models into the fNIRS data which were collected from our 
previous study [2]. Based on the averaged AR parameters derived, we simulated the resting state fNIRS signal 
through Matlab’s Econometrics toolbox [3]. The evoked responses were simulated by gamma function [3]. The 



spike motion artifacts were simulated by Laplace distribution function [3]. Shift artifacts were modeled as a random 
value change [3]. All fNIRS data simulated were time series with a total length of 20sec each at a sampling rate of 
25Hz. To validate the performances and the robustness of various CNNs architecture, three fNIRS data sets were 
generated differing by their overall size, i.e., 500, 1000 and 5000. The portion of training, validation, testing data 
were split by the ratio 8:1:1. 
3. Results 
3.1 Model training results 
The testing MSEs for each model and data set size are presented in Table 3. The ‘8-layer’ model trained overall 
exhibit the lowest MSEs for all data set size considered herein. Hence, the ‘8-layer’ model trained with 5000 
samples was retained for the rest of the study (‘CNNIRS’). 

Table 3. Mean squared error for neural networks 
Data sample size 500 1000 5000 
‘4-layer’ model 6.65 6.53 7.61 

‘4-layer+dropout’ model 11.47 11.00 8.40 
‘8-layer’ model 3.43 3.49 3.03 

‘8-layer+dropout’ model 8.47 9.28 10.73 
 

3.2 Comparison between models 
The CNNIRS model was benchmarked against ‘No correction’, spline, wavelet and Kalman filters. When applied to 
a new simulated sample of 330 pieces of fNIRS data (ten 20s samples of 33-channel data with the same probe 
geometry with [2]). The CNNIRS model demonstrated the lowest MSE overall (Fig. 1).  

 
Fig. 1. Mean and standard deviation of mean square error for the different motion artefacts removal methodologies tested. 

4. Conclusion 
We introduced a deep learning model to remove the motion artifacts in fNIRS model. This in silico study 
demonstrated that our CNNIRS model has higher accuracy than commonly used methods. We are currently applying 
this new approach on experimental data and will further explore its application in real world problem solving. 
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