Yuanyuan Gao

Sy1007212@gmail **Personal Page**

RG <u>ResearchGate Page</u> LinkedIn Page

Github Page

2015-2020

- (+01) 518-526-2923
- 2417-6, 21st St., Troy, NY 12180

Education

PhD in Mechanical Engineering (3.5/4.0)	Rensselaer Polytechnic Institute	New York	2015-2020
Visiting Scholar	University of Buffalo	Buffalo	2018-2019
Researcher	Harvard University	Boston	2016-2017
MS in Mechanical Engineering (3.6/4.0)	Beihang University	Beijing	2010-2013
BS in Aircraft Safety Engineering (3.4/4.0)	Beihang University	Beijing	2006-2010
Projects			

Research Assistant

- Rensselaer Polytechnic Institute (US rank #50) Project 1: Predicting surgical skills from neuroimaging data by CNN
 - Designed a CNN model of modality-specific kernels to extract biomarkers from neuroimaging data to predict the motor skill level (from $R^2 = 0.50$ to $R^2 = 0.73$).
- Project 2: Motion artifact removal in neuroimaging data by DAE
 - Constructed a denoise autoencoder (DAE) model to achieve 70% more noise removal.
- Project 3: Predicting learning curve characteristics by KPLS and k-means
 - Implemented Kernel PLS and k-means to predict the learning curve characteristics ($\mathbb{R}^2 = 0.81$).

Publications

Journal Papers

- Functional brain imaging reliably predicts bimanual motor skill performance in a standardized surgical task. Gao, Y. et al. 2020.IEEE TBME (Under review). Preprint
- Deep learning-based motion artifact removal in functional near-infrared spectroscopy (fNIRS). Gao, Y. et al. 2020. Neuroimage (Under review). Preprint
- A comprehensive review of experimental neuroimaging studies of the effect of transcranial electrical stimulation on human motor skills, Gao, Y. et al. 2020. Front. Neurosci. (Accepted). Preprint
- A Machine Learning approach to predict surgical learning curves. Gao, Y. et al. 2019. Surgery -

Conference Presentations

- Transcranial direct current stimulation speeds up surgical bimanual motor learning and increases functional activation. Gao, Y. et al. 2020. MHSRS Young Investigator breakout session, Award paper. link
- A deep learning approach to remove motion artifacts in fNIRS data analysis (Oral presentation). Gao, Y. et al. 2020. OSA Biophotonics Congress: Optics in the Life Sciences, Florida. *link*
- Monitoring the effect of transcranial Electric current Stimulation (tES) during a bimanual motor task via functional Near-InfraRed Spectroscopy (fNIRS) (Poster presentation). Gao, Y. et al. 2020. OSA Biophotonics Congress: Optics in the Life Sciences, Florida. *link*
- fNIRS as a quantitative tool to assess and predict surgical skills (Oral presentation). Gao, Y. et al. 2019. OSA Biophotonics Congress: Optics in the Life Sciences, Florida. *link*
- Neuroimaging biomarkers for surgical skill level prediction (Poster presentation). Gao, Y. et al. 2019. SPIE.Bios, San Francisco, CA.

Skills

Programming	Python MATLAB SQL C/C++/C# VB SPSS Minitab G*Power
Language	English and Mandarin
Research	Deep learning machine learning data analysis data science statistics