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A B S T R A C T

Background: Contemporary surgical training programs rely on the repetition of selected surgical motor tasks. Such
methodology is inherently open ended with no control on the time taken to attain a set level of proficiency, given
the trainees’ intrinsic differences in initial skill levels and learning abilities. Hence, an efficient training program
should aim at tailoring the surgical training protocols to each trainee. In this regard, a predictive model using
information from the initial learning stage to predict learning curve characteristics should facilitate the whole
surgical training process.
Methods: This paper analyzes learning curve data to train a multivariate supervised machine learning model. One
factor is extracted to define the trainees’ learning ability. An unsupervised machine learning model is also uti-
lized for trainee classification. When established, the model can predict robustly the learning curve characteristics
based on the first few trials.
Results: We show that the information present in the first 10 trials of surgical tasks can be utilized to predict the
number of trials required to achieve proficiency ( ) and the final performance level ( ). Further-
more, only a single factor, learning index, is required to describe the learning process and to classify learners with
unique learning characteristics.
Conclusion: Using machine learning models, we show, for the first time, that the first few trials contain sufficient
information to predict learning curve characteristics and that a single factor can capture the complex learning
behavior. Using such models holds the potential for personalization of training regimens, leading to greater effi-
ciency and lower costs.

© 2019

Introduction

Bimanual motor skill learning is an important aspect of surgical
training. Surgeons learn technical skills through repeated practice. How-
ever, most residency programs provide the opportunity to practice skills
without ensuring that a certain level of proficiency has been reached.
Technical surgical skills have been traditionally assessed using in-train-
ing evaluation reports, procedural-based assessment, or surgical log-
books. All these approaches are based on the traditional model of ap-
prenticeship with the faculty responsible for assessing technical profi-
ciency based on direct observation. However, problems including le-
niency/severity errors, central tendency errors, and “halo effects” as-
sociated with such approaches are well known.1,2 Moreover, trainees
have inherent differences in initial skill levels and learning rates

∗ Reprint requests: Suvranu De, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY
12180.
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and variations between surgical procedures, which limits the effective-
ness of the time-limited training approach.

Technical skill testing for certification and competency-based cur-
ricula are increasingly popular. Demonstrating proficiency in basic la-
paroscopic and endoscopic skills is now a prerequisite for certification
in general surgery.3 Starting in 2018, the fundamentals of laparoscopic
surgery (FLS) program is also required for board certification for obstet-
ric and gynecological surgery (www.flsprogram.org). Realizing the in-
herent problems with the approach of repeated practice, there is signif-
icant interest in proficiency-based training.4–7 In this approach, repeti-
tion is continued until a certain level of proficiency is achieved. How-
ever, the procedure is cumbersome and time consuming, as the number
of repetitions is not known in advance. To develop structured training
programs that account for individual variability in skills and learning
abilities, a more personalized method is needed, which can predict in-
dividual learning curves for any surgical procedure based on initial per-
formance. This requires a deeper understanding of learning curves for
surgical skills.

https://doi.org/10.1016/j.surg.2019.10.008
0039-6060/© 2019.
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Different techniques to analyze and model the learning curves of sur-
gical procedures have been presented in the literature. A review paper8

has summarized those approaches. First, without any statistical analysis,
a simple graph or a table displaying the outcome of the surgery against
the number of operations was presented to show the learning curve in a
substantial number of studies.8 As a higher level of analysis, basic statis-
tical tools such as t-test, analysis of variance, or χ2 test was applied to 2
or 3 groups of data split by a number of practices.8 However, the split-
ting points in these studies were arbitrarily selected, and the underlying
curves in each group were not analyzed.8

Besides statistically analyzing the learning curves, analytical model-
ing methods have also been presented in literature. A commonly used
modeling method is to fit a curve to the learning curve data using least
squares regression, with or without an adjustment for other confound-
ing factors including age and sex.8 Both linear and exponential curves
have been used to fit learning curves, without much justification for the
choice of these curves.8

The cumulative summation (CUSUM) technique was initially sug-
gested to monitor surgical performance9 but was recently applied to an-
alyze the learning curve of a surgical skill.10–15 CUSUM has a simple
formulation in that positive or negative increments are added to a cu-
mulative score according to failure or success of the successive trial.16 A
graph representation of CUSUM is intuitive in that a declining trend in-
dicates successive successes and an increasing trend indicates successive
failures.16 The 2 boundary limits, and in CUSUM graphs represent
whether or not the observed failure rate is significantly different from
the desired acceptable failure rate.16 The number of trials to achieve
proficiency is derived by counting the number of attempts before cross-
ing the boundary limits.17 With different specific aims, the design of
CUSUM schemes varies across studies. In some studies,18–20 CUSUM is
calculated as the cumulative difference between observed and expected
outcome values, such as operation time or blood loss, instead of binary
results of success or failure. A change-point in these CUSUM graphs was
determined to derive the number of trials to achieve proficiency18,20

or learning phases.19 Some studies set the downward part of CUSUM
graphs to 0 to monitor only failures.21

A unique disadvantage of all these existing approaches is that they
require information regarding training that has already taken place. Al-
though they are academically of interest, their utility in designing indi-
vidualized training programs is limited. To the best of our knowledge,
there are no approaches in the literature that focus on predicting learn-
ing curve features, including the final performance level after a certain
number of trials. Hence, our goal in this study is to overcome these lim-
itations in the existing literature by testing 2 hypotheses. First, we hy-
pothesize that the performance of a trainee during the first few trials
of a bimanual motor task has sufficient information to predict the num-
ber of trials required to achieve proficiency and the final performance
level. Second, we hypothesize that it is possible to define a single factor
that can describe how these parameters, including the initial skill level
of the trainee, are related to each other. To accomplish that, we have
performed a meta-analysis of bimanual skill acquisition in a pattern cut-
ting task, which is a part of the FLS program.13,15 Learning data on the
physical FLS trainer box and on a virtual basic laparoscopic skill trainer
(VBLaST) replicating the FLS tasks14,22–25 have been utilized.

Materials and methods

Data sources

In this study, we performed a retrospective analysis of the learning
curve data from 3 IRB approved studies.13,15,26. The studies were asso-
ciated with the FLS pattern cutting task which involves cutting a gauze
following a marked circle13,15and the FLS intracorporeal suturing.26

The 3 studies were selected because of the similarity in experimental
setup and procedures. Novice medical students, with no prior surgi

cal experience, were selected for these studies.13,15,26 The training was
carried out over a 3-week period using the FLS trainer box or VBLaST
replicating these tasks. The FLS program has been shown to be reli-
able to quantify surgical skill level,27,28 and metrics for these tasks are
established in the surgery literature29 and used in board certification
in general surgery. The performance score of each trial was calculated
from task performance time and performance error using the accredited
FLS scoring methodology with consent under a nondisclosure agreement
from the FLS Committee. The metrics for the VBLaST are derived from
the FLS metrics and discussed elsewhere.23 In both cases, the metrics are
aggregated into a final score, either being the FLS score or the VBLaST
score. These 2 scores are the quantities used to build the surgical learn-
ing curves. We excluded as outliers those curves that did not exhibit a
clear initial learning stage or a learning plateau. Fifteen learning curves
were then selected for this study (Table I).

Variables

This study involved 3 variables: the number of trials required to
achieve proficiency, the initial performance level, and the final perfor-
mance level. We defined the number of trials required to achieve profi-
ciency based on the Technical Skill Proficiency-Based Training Curricu-
lum4 for the FLS program. For the pattern cutting task, proficiency is
achieved if the task can be performed within 98 seconds on 2 consec-
utive repetitions; for the intracorporeal suture, trainees achieve profi-
ciency when they perform 10 additional trials after 2 consecutive trials
within 112 seconds with allowable errors. A similar definition was em-
ployed with the VBLaST data. We defined the initial performance level
as the average score of the first 3 trials. To define the final performance
level, multiple 2-tailed t-tests were performed between different trial in-
tervals. From the result in Table II, the fifth 10 trials performance is
not significantly different from the fourth 10 trials, but the other pairs
of trial intervals are significantly different. This indicates that from the
40th trial, the performance scores do not significantly change. Thus, we
defined the final performance level as the average score after the 40th
trial.

Multivariate supervised learning model

To test our first hypothesis, we used a multivariate supervised ma-
chine learning approach known as kernel partial least squares
(KPLS)30,31 to predict the learning curve features, including the num-
ber of trials to achieve proficiency and the final performance level

Table I
The source of the data 13 , 15

Study Platform Motor task No. of learning curves

Nemani et al 2017 13 FLS ∗ Pattern cutting 4
Nemani et al 2017 13 VBLaST ∗ Pattern cutting 6
Linsk et al 2017 15 VBLaST ∗ Pattern cutting 2
Fu et al 2019 26 FLS ∗ Suturing 3

∗ FLS is a physical training box and VBLaST is a virtual reality version of it.

Table II
Significant test results between trial intervals

Trial intervals Significant test

First vs second 10 trials P = .000 ∗

Second vs third 10 trials P = .004 ∗

Third vs fourth 10 trials P = .023 ∗

Fourth vs fifth 10 trials P = .205
∗ Significance α = 0.05.
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from the initial learning performance. KPLS first computes a non-linear
transformation of the 10 initial trials’ performance scores (denoted as

) from the 13 learning curve entries into a high dimensional feature
space. Once transformed, the projected observations are then linearly re-
gressed to maximize their covariance with the final performance score
or the number of trials to achieve proficiency (denoted as ). In this
way, the non-linear relationship could be modeled optimally between
the input and the output .

We used the coefficient of determination (denoted as ) as defined
below to quantify the accuracy of the proposed model:

(2)

(3)

(4)

where is the true outcome value, is the predicted outcome value,
is the mean of the true outcome value, and is the total number of sam-
ples. indicates that all the variance of the data is explained by the
model.30 Conversely, smaller values or even negative values indicate a
poor predictability is considered.

Considering the small sample size of the dataset, we validated our
modeling results using the leave-one-out cross-validation scheme.31 In
leave-one-out cross-validation, we excluded 1 learning curve from the
training dataset and tested the model on the learning curve left out, re-
peating the analysis for all learning curves to ensure robustness of the
model and to avoid overfitting.

Because the dataset is from subjects practicing on 2 types of train-
ing platforms, a physical FLS trainer box, and a VBLaST, it is neces-
sary to validate whether the model works across different platforms. To
achieve this, a platform-wise, cross-validation scheme was designed. In
this scheme, we trained the model on one platform and tested it on the
other one to demonstrate the effectiveness of the model across the 2
platforms.

Wright32 was the first to discuss learning curve modeling, and his
log-linear model has been used in prior literature.33 Other log-linear
based models have also been developed considering different factors af-
fecting learning curves, like the S-Curve model which takes a gradual
start-up into consideration.33 In the experimental setup in this study,
the subjects recruited were novice medical school students with no prior
surgical experience, and the training paradigm was consistent across tri-
als. Thus, we adopted the conventional log-linear model as a compari-
son, given by the following equation:

(5)

where N is the number of trials, Y is the performance, is the learning
rate, and is the initial performance level. The model variables are in-
dependently assessed for each subject.

Factor analysis model

Factor analysis is a statistical method to explore latent variables or
factors from the observed variables. In our case, we have 3 observed
variables—initial performance level, number of trials to achieve profi-
ciency, and final performance level. The question we asked is whether
a single variable can be used to represent all 3 variables. Here, we use
a factor analysis model known as the kernel principal component analy-
sis (KPCA) approach31 to extract a representative factor, learning in-
dex (LI), from the 3 learning curve features. We first mapped the 3 fea-
tures into a high dimensional non-linear space. Then, we extracted 1
principal component as LI from these high-dimensional data by princi

ple component analysis. To test whether LI represents the 3 learning
curve features, we used LI to predict the 3 features by KPLS. If LI could
predict all 3 features accurately, then the information compressed in LI
is enough to represent the 3 learning curve features.

Unsupervised classification of skill level

An unsupervised learning approach known as k-means clustering
analysis34,35 was adopted to separate the trainees according to their dif-
ferent learning curve characteristics. By analyzing the learning curve
features of different trainee groups, the learning characteristics of each
group were summarized. Furthermore, grouping results derived from
LI was compared to the grouping result from all the 3 features to see
whether LI could indicate unique learning characteristics.

Results

Learning curve data and features

The learning curve data for all subjects are presented (4 trained
on FLS physical training box and 9 trained on VBLaST virtual reality
trainer) in Fig 1 and the 3 features calculated from the learning curves
are summarized in Table III.

Prediction performance

Table IV represents the values for KPLS and the log-linear mod-
els when they are used to predict the number of trials to achieve pro-
ficiency and the final performance level based on the performance in
initial several trials. The performance of the KPLS model indicates that
the initial performance pattern can be used to predict the 2 learning
curve features with a high degree of accuracy. Conversely, using the
log-linear model, the resultant values for predicting the number of
trials to achieve proficiency are negative and those for predicting the fi

Fig 1. The learning curves are from 3 studies: (A) FLS pattern cutting study in Nemani
et al 201713; (B) VBLaST pattern cutting study in Nemani et al 201713; (C) VBLaST pat-
tern cutting study in Linsk et al 201715; and (D) FLS intracorporeal suture study in Fu et al
2019.26 (The permission to reuse the data has been acquired from the journals).
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Table III
The learning curve features values for all subjects (performance levels refer to the FLS/
VBLaST scores)

Subject
no.

Initial performance
level (average from
trial #1 to trial #3)

Number of trials
required to
achieve
proficiency

Final performance level
(average from trial #40
to trial #50)

1 13.10 57 65.46
2 4.88 15 83.36
3 2.38 33 72.86
4 18.57 22 69.32
5 26.07 45 70.50
6 34.88 114 66.84
7 16.90 50 62.28
8 25.36 67 59.64
9 26.31 52 68.21
10 42.98 10 74.93
11 21.43 20 80.32
12 40.83 50 71.14
13 16.13 56 83.50
14 0 114 66.77
15 0 97 76.95

Table IV
Accuracy of KPLS and log-linear model

Learning curve variable KPLS Log-linear model

Number of trials to achieve
proficiency

(first 10
trials)

(first 50
trials) ∗

(first 40
trials) ∗

(first 30
trials) ∗

(first 20
trials) ∗

(first 10
trials) ∗

Final performance level (first 10
trials)

(first 50
trials)

(first 40
trials)

(first 30
trials)

(first 20
trials)

(first 10
trials)

∗ For the first 10 trials, the predicted learning curves of subject 4, 6, 12, and 13 do not
achieve proficiency in 1,000 trials and are excluded from the

calculation; for the first 20 trials, the predicted learning curve of subject 6 does not achieve
proficiency in 1,000 trials and is excluded from the

value calculation; for the first 30, 40, and 50 trials, the predicted learning curve of subject
14 does not achieve proficiency in 1,000 trials and is excluded from the

value calculation.

nal performance level indicate the need for a considerable number of
initial trials to be close to 1.

The log-linear model performance was further explored with a dif-
ferent number of initial trials for which data were used for model
development. One example of the learning curve from subject 1 is
shown in Fig 2. The figure shows that the log-linear model works well
when the FLS scores for the first 50 trials are known. However, when
fewer trials are used as input to the model, the log-linear curve clearly
becomes less accurate. This is particularly evident when data from

only the first 10 trials are used, and the log-linear curve underestimates
the learning effect considerably. The underestimation of the log-lin-
ear model also explains why the values for predicting the num-
ber of trials to achieve proficiency are all negative using this approach
(Table IV). The predicted curves are grossly underestimated, implying
that a much larger number of trials is required to achieve proficiency
than what is actually needed. Some predicted curves could not achieve
proficiency even after 1,000 trials and are excluded from the analysis
(Table IV). Although the variables being included in this work are very
simple, it is shown to be hard to predict those using existing models,
such as the log-linear model.

Considering the 2 different platforms the subjects practiced on (phys-
ical and virtual), platform-wise, cross-validation tests were performed
on the KPLS model. The results are listed in Table V. When predict-
ing the number of trials to achieve proficiency and the final perfor-
mance, the of the KPLS model are all above 0.70 in the platform-wise,
cross-validation testing. This indicates that the learning curve data pat-
terns are consistent across the physical FLS training box and the VBLaST
box, and the datasets could be meta-analyzed.

Factor analysis

We derived a single factor, which we referred to as LI, from the 3
learning curve features (initial performance level, number of trials to
achieve proficiency, and final performance level), based on the KPCA
method. LI is a latent variable which depicts the learning characteristics
of the learners. The values when using LI to predict the 3 learning
curve features by a KPLS model are listed in Table VI. Since all the
values are above 0.8, the extracted feature could be determined as a rep-
resentative feature of the 3 features.

K-means clustering

Next, we further grouped the subjects by their learning curve fea-
tures (initial performance level, number of trials to achieve proficiency,
and final performance level) using the k-means clustering algorithm.
Two groups naturally emerged from this analysis: group 1 with subjects
2, 10, 11, and 13 and group 2 consisting of the remaining ones. To un-
derstand the implication of this grouping, we plotted the number of tri-
als to achieve proficiency and the final performance level against the
initial performance level in Fig 3, A. The crosses represent subjects in
group 1, and the circles represent subjects in group 2. From these plots,
it is clear that trainees in group 1 have higher initial performance lev-
els, require fewer trials to achieve proficiency, and achieve higher final
performance levels; whereas the trainees in group 2 have lower initial
performance levels, need more trials to achieve proficiency, and achieve
lower final performance levels. When we use the same k-means cluster-
ing algorithm to group the subjects based on the feature values of LI, the
same grouping result is derived as shown in Figure 3, B. The 2 groups
are clearly separable and clustered by the extracted features. This re-
sult supports that LI is sufficient to classify learners with unique learning
characteristics.

Discussion

Our findings highlight that the use of machine learning enables as-
sessing the performance of a trainee by evaluating his or her perfor-
mance during the first 10 repetitive trials. Based on only 10 trials, we
can predict (1) the number of trials required to achieve proficiency and
(2) the final performance level, as defined as the average FLS score af-
ter 40th trial, with a high degree of accuracy. Furthermore, a single fac-
tor, LI, which we refer to as the learning ability, can be derived from
a non-linear factor analysis model. The single factor describes common
variation within these 2 parameters and the initial performance level.
This, in turn, implies that the number of trials required to achieve pro
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Fig 2. The performance of the log-linear model developed using the scores for the first 50, 40, 30, 20, and 10 of trials for subject 1. “o”s represent the trials for which the scores are
assumed to be known; “x”s represent the remainder of the trials for which the data are not used in developing the model. The solid line represents the log-linear model.

Table V
Cross-validation results of KPLS

Learning curve
variable Platform-wise

Trained on FLS platform but
tested on the VBLaST
platform

Trained on the VBLaST
platform but tested on FLS
platform

Number of trials
to achieve
proficiency
Final performance
level

Table VI
The values using the learning ability to predict the 3 learning curve features

Case

Predicting all the 3 features 0.92
Initial performance level 0.87
Number of trials to achieve proficiency 0.93
Final performance level 0.94

ficiency, the final performance level, and the initial performance are not
independent of each other.

These findings are related to earlier work in this area, as the ini-
tial learning stages are related to the later stages.36,37 Moreover, Ji-
rapinyo et al38 showed that a log-linear regression model can describe
surgical training learning curves reasonably well when all learning data
are used. However, other studies contradict this.19,39 With respect to
our study, even though we extracted very simple learning curve char-
acteristics, we still found limitation in the use of log-linear models.
One potential reason is that the log-linear regression model is derived

from group data, but individual learning progress may be distinct from
the group trend.40 Another, more intuitive reason is that the log-linear
model assumes a predefined form for the learning curves before fitting
the curves. In sharp contrast, the KPLS model does not make such an
assumption. Additionally, it is well known that a larger set of variables
that are highly correlated or collinear can yield difficulties in identify-
ing regression models. KPLS is a nonlinear regression tool that has been
developed in the field of chemometrics with the aim to handle such sit-
uations.30 Therefore, the KPLS regression model is able to capture the
complex process of surgical skill learning in a data-driven format, which
is missed by simplistic analytical models including the log-linear model.
Once a KPLS regression model has been developed for a surgical task,
the trained model may, consequently, be employed to predict the num-
ber of trials needed to achieve proficiency by any new learner based on
scores of the initial few trials.

Moreover, the use of machine learning for learning curve predic-
tion has the potential to redesign surgical training programs and has
implications for skill decay and retraining throughout the entire profes-
sional life of surgeons. Predicting the learning curve variables early in
the training process would help to provide more focused feedback and
implement adaptive learning strategies. The idea of adaptive training is
not new and has been suggested in the surgical literature. For example,
Stefanidis et al41 pointed out that by establishing skill learning curves,
the training curricula could be tailored to provide additional training to
those who need more training than others. Another study42 compared
adaptive curricula and volume-based curricula in surgical training and
demonstrated that the group trained with adaptive curricula achieved
the same level of performance but required fewer training hours.

Another important finding of our study is that the single factor al-
lows clustering the trainees into 2 groups based on their distinct learn-
ing curve characteristics. These groups have clearly unique character-
istics, where the participants in group 1 had a higher initial ability to
carry out the FLS task, showed higher final performance level, and did
not require a considerable number of trials to converge from the ini

Fig 3. The trainees were clustered into 2 groups by the k-means clustering algorithm. “x”s represent trainees that are clustered into group 1 and “o”s represent trainees that are clustered
into group 2. The grouping results are from (A) the learning curve features and (B) the extracted factor LI.
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tial to their final performance level. On the other hand, the subjects in
group 2 had a lower initial ability, showed a lower final performance
level, and required more repetitive trials to reach the final performance
level. The surgical motor learning difference between individuals has
also been demonstrated and studied in other studies. For example, Louri-
das et al43 showed that with the same training curriculum, the partici-
pants demonstrated different learning results and could be divided into
3 groups with top, moderate, and low performance. Similar grouping re-
sults of surgical residents were reported.44 Our study provides a quan-
titative understanding that individuals with different initial skill levels
require different practice to reach a final performance level. Differences
in learning characteristics may be due to innate factors including hand-
edness, gender, visual-spatial ability, and confidence level45–51 or ex-
trinsic factors including research experience, selection of specialty, and
grouping.49,52,53

Our study has several limitations which may suggest conducting fur-
ther research in this area. First, the learning curves were quantified by
task performance scores, which are calculated from performance time
and performance error. Although these same metrics are used in the
FLS, there could be other kinematic (eg, hand trajectory) or physiolog-
ical (eg, eye motion or skin conductance) metrics which could provide
further information regarding performance. In separate work, we have
shown that functional brain imaging that relies on neuro-vascular cou-
pling provides much more accurate quantification of bimanual motor
skill learning than the traditional FLS metrics.54,55 Second, the biman-
ual motor task in this study is limited to the pattern cutting task and in-
tracorporeal suture task. Extending the analysis procedures to other FLS
tasks and actual surgical procedures is left for future work. It is impor-
tant to note that the results reported can assist in planning individual-
ized training regimes. It is not intended to share the predicted number of
trials with the learners, as this may affect their performance negatively.
In addition to that, physiological measurement, such as functional brain
imaging, could play an important role to monitor the workload and at-
tention level to determine whether the trainees are trying their best to
learn. Finally, data from only a few learning curves have been used in
this study. Learning curve studies are inherently difficult to do owing
to the extended time commitment of the medical students and the lim-
ited number of willing participants. As summarized in a comprehensive
review paper,56 a sample size of 8 to 23 is reported in previous simu-
lation-based surgical training studies, indicating the difficulty to recruit
participants in multiple days training protocols. We included 3 of our
previous studies collecting the learning curve information to have a sam-
ple size of 15. To set up a machine learning model based on such a small
sample size, we selected KPLS, which is a machine learning method suit-
able for small sample size. Such methods have an extensive record of
applications in data chemometrics,57–59 where small sample sizes are
the norm rather than the exception. Moreover, we report results that are
based on an independent assessment of the model performance to ensure
that the established regression models are not compromised by overfit-
ting. Future multi-center studies may mitigate some of these issues.

In conclusion, we propose the use of sophisticated machine learning
models for predicting the learning curve features from the initial few tri-
als of bimanual surgical motor tasks. A single factor, LI, which we define
as the learning ability, can capture complexities of learning behavior.
Use of such models holds the potential for personalization of training
regimens, leading to greater efficiency and lower costs.
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